5,533 research outputs found

    Comparative Cochlear Reconstruction in Mammals

    Get PDF
    Anatomy and histology of cochleas in mammal

    Canonical treatment of two dimensional gravity as an anomalous gauge theory

    Full text link
    The extended phase space method of Batalin, Fradkin and Vilkovisky is applied to formulate two dimensional gravity in a general class of gauges. A BRST formulation of the light-cone gauge is presented to reveal the relationship between the BRST symmetry and the origin of SL(2,R)SL(2,R) current algebra. From the same principle we derive the conformal gauge action suggested by David, Distler and Kawai.Comment: 11 pages, KANAZAWA-92-1

    Observation of Zeeman effect in topological surface state with distinct material dependence

    Full text link
    The helical Dirac fermions on the surface of topological insulators host novel relativistic quantum phenomena in solids. Manipulating spins of topological surface state (TSS) represents an essential step towards exploring the theoretically predicted exotic states related to time reversal symmetry (TRS) breaking via magnetism or magnetic field. Understanding Zeeman effect of TSS and determining its g-factor are pivotal for such manipulations in the latter form of TRS breaking. Here, we report those direct experimental observations in Bi2Se3 and Sb2Te2Se by spectroscopic imaging scanning tunneling microscopy. The Zeeman shifting of zero mode Landau level is identified unambiguously by judiciously excluding the extrinsic influences associated with the non-linearity in the TSS band dispersion and the spatially varying potential. The g-factors of TSS in Bi2Se3 and Sb2Te2Se are determined to be 18 and -6, respectively. This remarkable material dependence opens a new route to control the spins in the TSS.Comment: main text: 17 pages, 4 figures; supplementary: 15 pages, 7 figure

    Spin Excitations and Sum Rules in the Heisenberg Antiferromagnet

    Full text link
    Various bounds for the energy of collective excitations in the Heisenberg antiferromagnet are presented and discussed using the formalism of sum rules. We show that the Feynman approximation significantly overestimates (by about 30\% in the S=12S={1\over2} square lattice) the spin velocity due to the non negligible contribution of multi magnons to the energy weighted sum rule. We also discuss a different, Goldstone type bound depending explicitly on the order parameter (staggered magnetization). This bound is shown to be proportional to the dispersion of classical spin wave theory with a q-independent normalization factor. Rigorous bounds for the excitation energies in the anisotropic Heisenberg model are also presented.Comment: 26 pages, Plain TeX including 1 PostScript figure, UTF-307-10/9
    • …
    corecore